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Hypersonic weak-interaction solutions for flow 
past a very slender axisymmetric body 

By ARTHUR K. CROSS AND WILLIAM B. BUSH 
University of Southern California, Department of Aerospace Engineering 

(Received 5 March 1969) 

The Navier-Stokes hypersonic weak-interaction theory is presented for the flow 
of a viscous, heat-conducting, compressible fluid past a very slender axisymmetric 
body, when the ratio of the radius of the body to the radial thickness of the 
viscous region, produced and supported by the body, is much less than unity. 
The fluid is assumed to be a perfect gas having constant specific heats, a constant 
Prandtl number of order unity, and viscosity coefficients varying as a power of 
the absolute temperature. Solutions are studied for the free-stream Mach number, 
the free-stream Reynolds number based on the axial length of the body, and 
the reciprocal of the weak-interaction parameter much greater than unity. 

It is shown that, for the viscosity-temperature exponent w less than 1, seven 
distinct layers span the region between the shock wave and the body, which is of 
arbitrary shape. The leading approximations for the behaviour of the flow in 
these seven layers are analyzed, and the restrictions imposed on the theory are 
obtained . 

1. Introduction 
This paper presents the formulation of the hypersonic weak-interaction 

theory (HWIT) regime for flow past a very slender axisymmetric body, for the 
case when the transverse body curvature is much less than the radial thickness 
of the viscous region supported by the body. Thus, for this presentation, it is 
assumed that the free-stream Mach number M ,  and the free-stream Reynolds 
number based on the axial distance of the body RL, are much greater than unity, 
and that the body radial thickness parameter 6b ,  and the viscous region radial 
thickness parameter 6, are much less than unity, with the parameters ordered by 

Prom the above, it is seen that the present formulation is an extension of the 
existing formulations of the HWIT axisymmetric problem (cf. for example, 
Probstein 1955; Probstein & Elliot 1956), which are ordered by 

8, g 8g 1/M g 1. 

6 < 6, < l/J%!< 1. 

In  the following sections, the uniformly valid solutions of the flow variables 
in the domain between the shock wave and body are determined by a rigorous 
and complete treatment of the seven distinct physical layers that span the do- 
main. The formulation provides the orders of magnitude for all the flow quantities 
in each region, and thus affords physical insight into the flow field picture. 

35-2 
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The Navier-Stokes equations in cylindrical polar co-ordinates are given in $ 2 .  
In $ 3  the analysis of the principal inviscid layer (PIL), supported by the 

viscous layers acting as a slender ‘effective body’ with a thickness ratio of 0(6) ,  
is given. This analysis, which is just the linearized supersonic inviscid flow theory 
in a modified hypersonic form, closely follows that given by Bush & Cross (1967) 
for the HWIT for flow past a flat plate. The PIL solutions presented are those 
valid when the ‘effective body’ is a paraboloid. These solutions, however, are 
non-uniform near the shock wave and the outer edge of the ‘effective body’. 

In $ 4 an analysis of the exterior inviscid layer (EIL), the thin non-linear layer 
intermediate to the shock wave and the PIL, provides the solutions for the flow 
variables which are uniform at the shock and match to the PIL solutions. In 
the process, the shock shape correction produced by a paraboloidal ‘effective 
body’ is determined. The analysis for the EIL, again, parallels that presented 
by Bush & Cross (1967) for the flat plate HWIT. 

In $ 5  an analysis is presented for the interior inviscid layer (IIL), which is 
introduced to remove the non-uniformities in the PIL solutions in the vicinity of 
the ‘effective body’. The treatment for the IIL, whose radial thickness is of the 
same order of magnitude as that of the ‘effective body’, is a hypersonic modifica- 
tion of the incompressible treatment due to Cole (1968). 

In 6 the ‘Oseen-like ’ principal viscous layer (PVL), whose radial thickness is 
O(S), is analyzed. The formulation for this layer follows those of Stewartson 
(1964) and Bush (1968) for the corresponding layer in the hypersonic strong- 
interaction theory (HSIT) rdgime. The asymptotic behaviours of the PVL solu- 
tions near the layer’s ‘sharp’ paraboloidal outer edge and near the body are 
determined; they are given in terms of the logarithmic radial variable first 
introduced by Bush (1968). As in the HSIT case, these HWIT PVL solutions 
are not capable of satisfying the non-slip, temperature-specified boundary con- 
ditions at the body surface. Consequently, the PVL must be complemented by 
an additional layer, interior to the PVL, in order to describe the adjustment of 
the flow in the vicinity of the body surface. 

This layer interior to the PVL, a ‘ Couette-like ’ body viscous layer (BVL) with 
dissipation, is investigated in $ 7 ,  with the analysis again paralleling that of 
Bush (1968) for the equivalent layer of the HSIT rdgime. The BVL solutions 
match the PVL solutions and satisfy the axial velocity non-slip and the tempera- 
ture-specified boundary conditions at the body surface, but do not satisfy the 
radial velocity non-slip condition. 

The failure of the BVL radial velocity solution to satisfy the non-slip boundary 
condition at  the body leads to the introduction of a ‘ Stokes-like ’ layer directly 
adjacent to the body, designated as the wall viscous layer (WVL). An analysis 
of this WVL, in $ 8 ,  leads to solutions which match to the BVL solutions and 
completely satisfy the surface boundary conditions. The skin-friction and heat- 
transfer coefficients, for an arbitrary body shape, are evaluated (to two terms) 
from the WVL solutions. 

Since all the IIL and PVL solutions do not match directly, in the appendix 
an analysis of the required viscous transition layer (VTL), intermediate to 
these two layers, is presented. The asymptotic behaviours, for the flow variables 
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in this VTL, as the PVL and IIL are approached, are determined, using essen- 
tially the same techniques as Bush & Cross (1967). The VTL solutiondare, then, 
shown to match these of the PVL and IIL. 

A schematic diagram of the hypersonic weak-interaction layers, for flow past 
a very slender axisymmetric body, is given in figure 1. 

L 
H 

FIGURE 1. Schematic diagram of hypersonic weak interaction layers for flow past a very 
slender axisymmetric body. nmw, shock wave; __ , Mach wave. A ,  exterior inviscid 
layer r -  (1/M) x = O((M8)$/M). B, principal inviscid layer r = 0(1/M).  C, interior inviscid 
layer r = O(8). D, viscous transition layer Ar = O ( l / J R L ) .  E ,  principal viscous layer 
r = O(8). F ,  body viscous layer r = O(8tbS1-ta), 0 < t ,  < 1.  G, wall viscous layer r = O(S,). 
H ,  very slender body r = S,R,(z). 

2. The equations of motion 
Consider the flow of a viscous, compressible gas past a very slender axi- 

symmetric body. Let x1 = L x  and rl = Lr represent the cylindrical polar co- 
ordinates along the axis of symmetry from the vertex of the body and normal 
to this axis, respectively. The length L is chosen so that x is of order unity in the 
region where the weak-interaction theory is valid. 

Under this formulation, the equation of the surface of this slender body is 

r = GbRb(x), with 8, = GD, < S < 1, Rb(x) = O(l) ,  

where 6 represents the scaling of the effective thickness of the viscous layer(s) 
supported by the body. The velocity components in the xl- and r,-directions are 
u1 = u,u and v1 = u, w, and the pressure, temperature, and density, respectively, 
are p ,  = p w p ,  !l', = T,T, and p1 = pmp, where urn, p a ,  Tw and pm, respectively, 
are the velocity in the x,-direction, pressure, temperature, and density in the 
undisturbed region upstream of the body. 

A perfect gas ( p  = pT)  is assumed, having (i) constant specific heats, cV1 and 
CP,, with y = (c,,/cv,) = const.; (ii) a constant Prandtl number of order unity 
(a = const. = O(1)); and (iii) its first and second viscosity coefficients propor- 
tional to a power, w ,  of the absolute temperature (,ul = pwp = , u ,Tw,  with 
Q < w < 1; A, = p W A  =j,um,u =j,uwTw, j = const. = O(1)). 
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The Navier-Stokes equations of motion in cylindrical polar co-ordinates for 
the flow of such a gas are 

a a 
- ( p u r )  + - (pwr) = 0, ax ar 

au au 6 ap 
p u-+w- +-- ( ax a?)  0,ax 

where E = (7- I ) / ( ? +  1 )  = O ( l ) ,  the Newtonian approximation (of E < 1 )  
not being invoked; M 2  = (pa u;/ypm) % 1 ; 0, = e{( 1 +€) I (  1 - e ) }  M 2  + 1 ; and 
RL = (PmUmL/P,) B 1. 

3. The principal inviscid (shock) layer 
According to hypersonic weak-interaction theory (HWIT), the slender body, 

whose surface is given by r = 6, Rb(x),  combines with the thin viscous, heat- 
conducting layer(s) a t  the body surface to disturb the uniform external flow. This 
combination of the body and the viscous layer(s),whose outer edge is given by 
r = &R,(x), with 6, the thickness parameter of this combination (for the flow 
regime under consideration, 6, = 6D, < 6 < 1 / M  < 1 )  acts as slender ‘effective 
body ’, producing an oblique (Rankine-Hugoniot) shock wave and an inviscid 
‘shock layer’ between the shock wave and the ‘effective body’. The analysis of 
the HWIT principal inviscid (shock) layer provides the starting point for this 
investigation. 

For this principal inviscid layer (PIL), the distorted co-ordinates and flow 
quantities have the following representations (cf. Bush & Cross 1967): 

xu = x, ra = M r ;  (3.1) 

u = 1 + (K,/M2) u, + . . .) w = (K,/M) w, + . . ., 
p = 1+K,p,+ ..., p = l+K,p,+ ..., T = l+K,T,+ ..., (3.2) 

where K ,  = parameter to be determined in 3 5 < 1, and fa = fu(x,, r,) = O(1) .  
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Substitution of (3 .1)  and (3 .2 )  into the equations of motion, (2.1)-(2.4),  yields, 
to leading approximation, the following linear system : 

The ratio of the orders of magnitude of the leading viscosity and heat-conduction 
terms (which have been neglected) to those of the inviscid convection and 
pressure gradient terms (which have been retained) is 

( M ~ R , )  = ( ~ 2 ( 1 + ~ )  e ; + y L s 2 )  (sye;+.) ( i / ~ 2 0 ) .  

It is demonstrated, in $ 7 ,  that (M2/RL) + 0. 
With rearrangement, (3 .3 )  becomes 

1 Y-1 1 
uu = - - ~ u + f l u ( r u ) ,  Ta  = -Pa+-K(ru) ,  ~a = -Pa-Ha(ru)-  (3 .4 )  Y Y Y 

Subject to subsequent verification by matching, the following solutions to 

( 3 . 5 a )  

(3 .5b )  

(3 .5c ,  d ,  e )  

where Uu,o = const. (to be determined in 8 5). These solutions are derived from 
the hypersonic limit of the KBrmBn-Moore potential for flow past a paraboloid, 

(3 .4 )  are proposed: 
u, = - Ua,o[(x2,- r2,)+]-1, 

u, = Uu,ox,[r,(x: - r:)+]-l, 

Pa = Ysa-Yua, To = (Y-1)f ia+Hu-(Y-1)ua,  Pa = fia-Ha-u,, 

4, = ua, 0 1% NX2,  - a+ - Xa)/ral .  (3 .6)  

In  the vicinity of the shock wave, where (xu - r,) = r,* -+ 0, xu fixed, the asymp- 
totic solutions for the flow quantities, from (3 .5 ) )  are found to exhibit singular 
behaviours, i.e. 

Va,  - u a ,  P ~ / Y ,  T u / ( ~ - l ) ,  Pa = uu,o(2xurZ)-++**. + ( 3 . 7 ) t  

Hence, in order to develop uniformly valid solutions for the layers spanning the 
region between the shock wave and the body surface, a thin exterior inviscid 
layer (EIL) is introduced between the PIL and the Rankine-Hugoniot shock 
(cf. Bush & Cross 1967). The analysis of  the EIL is presented in $4. Through this 
analysis the functions Sa(ra) and Ha(r,) are determined. 

I n  the vicinity of the outer edge of the ‘effective body’, where r,  -+ 0, xu fixed, 

u, = - Uu,o/~a+ ..., v, = Ua,o/r,+ ..., 
pa = YS,(O) + y U , o / x a +  0 . D )  

pa = x,(0)-H,(0)+u,,,/x,+.... (3 .8)  

T, = (7- 1) x,(O) +Ha(’)) + (7- 1) Ua,o/Xa+ . * * s  

t I t  follows, then, that the asymptotic behaviour of r,*(x,, wa), &S u, + 00, 5, fixed, is: 
r,* = (BU:.,,) (z,u:)-l+ ...+ 0. 
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From (3.8), it is seen that the behaviour of v, is not uniform as the 'effective body ' 
is approached. The analysis of the interior inviscid layer (IIL), in which the 
above non-uniformity in the radial velocity component is removed, is presented 
in 35. 

4. The inviscid exterior layer 
The weak-interaction shock relations are now considered. The shock wave in 

the weak-interaction limit ( M a  = K --f 0) corresponds to a small disturbance 
(of a magnitude to be determined) on a Mach wave. Thus, in this limit, the shock 
shape is taken to be 

where K f  = parameter to be determined (cf. $3 4 and 5) < 1. For such a shock 
shape, the flow variables at the downstream face of the shock are 

rsh(x) = (1/M) [x + K f  P ( x )  + ...I, (4.1) 

(1-ush)i(Kf/Jf2) = V,h/(Kf/Jf) = (Psh- W Y K f  = (%A- l)/(Y- 1)Kf = ( A h -  l ) / K f  

(4.2) = {4/(y+ l ) }F ' ( x )+  ... . 
The forms of (3.5) and of (4.1)-(4.2) suggest that the proper representations 

for the co-ordinates and flow quantities in this layer adjacent to the shock front 
are 

xf = x,  rf = ( x - M r ) / K f ;  (4.3) 
u = 1 + ( K f / P )  U f  + . . .) v = ( K f / M )  V f  + . . ., 

p = I + K f p f +  ..., T = 1+KfT'+ ..., p = 1=Kfp f+  ..., (4.4) 

(Vf),h, = - (Uf),h = (Pf lsh = (Pf)sh/Y = (T f ) sh / (Y  - 1) = {4 / (Y  + l ) ]P ' ( x ) ,  (4.5) 

where ff = ff (5, r f )  = O( 1) .  The shock relations for these representations are 

where (f f) ,h =f f (x f ,  -E"(X,)) .  

Substitution of (4.3) and (4.4) into the equations of motion, (2.1)-(2.4), yields 
the following quasilinear system: 

pf-(pf+Tf)  = 0, Pf-YPf = 0, 

1 1 -( a U + - - P f  f ) = o ,  ; ( 2 1 ' y P f ) = o .  
arf 

Application of the shock relations, (44, to (4.6), shows that 

PflY = Pf = -uf = Tf/(r-1) = @f, (4.7) 

where the governing equation for vf is the quasilinear equation, 

avf y + i v  av, v 
axf 2 far, zxf 

+f = 0. 

t The last term of (4.8) represents the three-dimensional &xisymmetric contribution ; 
only the first two terms are present in the corresponding HWIT flat plate equation. 
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The general solution of (4.8) is 

?.f = - (y+  l ) V f X f +  o(v;xf). 

25. = q - l q c f ) ,  Cf = rf/xy, 

dcf 

However, the assumption of a self-similar solution, with the variables 

reduces (4.8) to 

[ (y+  1)  y+ 2mcf]- dV, + (1  - 2m)V, = 0. 

The solution of this equation, in terms of the original variables, is 

rf = - ( y  + 1) wfxf+ Nf(w;xf)-mI(1-2m), 
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(4.9) 

(4.10) 

(4.11) 

(4.12) 

where Nf = const. determined subsequently. It is noteworthy that the second 
term in (4.12) represents the restricted similarity form of the function @(v;xf) 
in the general solution of (4.8). 

The procedure for matching the PIL and EIL solutions follows that employed 
in the HWIT flat plate analysis (Bush & Cross 1967). A comparison of (3.7), 
and of (4.7) and (4.12), indicates that the solutions of these two layers match if 

m = 1  3 ,  Kf = (K,)Q, Nf = u:,,/2, &(r,) = K&-,) = 0. (4.13) 

Evaluating (4.12) at the shock, by means of (4.5) and (4.13), and solving the 
resulting equation for the shock shape correction, F ( x ) ,  yields 

F(x)  = ($) [ (y  + 1)  UU,,/2]+d. (4.14) 

From results obtained in $ 5 ,  K ,  = ( M c ~ ) ~  and U,,, = &A:. Accordingly, the 
shock shape can be expressed as 

(r)sh = ( l / M )  {x + (M6)* @{(y + 1) Ai/4)Q] xi + . . .}. (4.15) 

5. The interior inviscid layer 
Inspection of (3.1) and (3.5) shows that the behaviour of u, is not uniform as 

the effective body is approached, since, as r,  -+ 0, w, --f (U,, ,/r,) -+ 00. Accordingly, 
a layer intermediate to the principal inviscid layer and the ‘effective body’ 
produced by the viscous effects is introduced (cf. Cole 1968). It is anticipated 
that this layer will have the same thickness ordering 6 as the ‘effective body’, to 
permit evaluation of the ‘effective body’ boundary conditions in terms of a finite 
value of the layer’s independent variable ri = rj6. 

These considerations, the forms of the solutions of (3.5) and of the ‘effective 
body ’ boundary conditions, suggest that the proper representations for the 
co-ordinates and flow quantities for this layer adjacent to the ‘effective body’ 
are 

(5.1) 

u = 1 + (K,/M2) ui + . . .) u = 6 U i  + . . ., 
I, = I+K,p,+ ..., T = l+K,q+ ..., p = l+K,pi+ ..., (5.2) 

xi = x,  rg = r/6; 

wheref, = fi(xi, ri) = O( 1). 
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With these representations, for ( 1/RLa2) < 1 (as is shown in $7) ,  the leading 
terms in the equations of motion are 

a 
pi = pi + 5, - (riwi) = 0, ari 

Taking the new independent and dependent variables to be 

ti = xi, qi = ri/xt, (5.4) 

U i  = q ( ’ ? l i ) / & 9  vi = K(’Vi)/Et7 
pi = G(~i)/ti,  5 = @i(~i)/&j Pi = oi(~i)/&i, (5.5) 

leads to the following system of ordinary differential equations describing the 
self-similar flow contemplated : 

d p, = Bi + oi, - (q&) = 0, 
d7i 

This system of equations is easily integrated. In terms of the original variables, 
the IIL solutions, which match those proposed for the PIL, are taken to be 

with K ,  = (M6)Z. 

The ‘effective body’ boundary condition that the velocity normal to the outer 
edge of this ‘effective body ’, r = 6R,, be zero, is to be satisfied in terms of the IIL 
flow variables. The ‘effective body ’ is taken to be a paraboloid, as will be verified 
in $6, so that 

R, = A,x~. (5.9) 

(It is noted that the proposed PIL solutions anticipated the taking of the 
‘effective body’ to be a paraboloid.) Thus, for the paraboloidal ‘effective body’, 
it is required that 
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To satisfy this condition, it follows that 

The value that A,, itself, must take is determined in 
For future reference, the asymptotic behaviours 

U& = &At. 

body 555 

(5.11) 

of the IIL solutions, as 
3 7 .  

3 y A i  2 yi-A 
p = 1 + [T (1 +3  (y) + . . .)] + . . ., 

T = 1 + (MS)2 r(yiL)A’ (1 +: ?*) + ...)] + (5.12) 

6. The principal viscous layer 
The principal viscous layer (PVL) is a high temperature, low density region, 

across which the pressure is constant. This layer has a ‘sharp outer edge’, 
r = SR,(x), and acts as a slender ‘effective body’ producing the weak oblique 
(Rankine-Hugoniot) shock wave and the inviscid shock layer between the shock 
and the ‘body’. The analysis of this major viscous region (which is much larger 
than the actual body: M6, Q MS < 1) provides the starting point for the analysis 
of the viscous zone. 

For the analysis of this layer, the following distorted co-ordinates and flow 
variable expansions are assumed: 

x, = x ,  rk = rlS; (6.1) 

T = MzB,T,+ ..., p = l+(MS)’Pk+ ..., (6.2) 

= i+e,u,+ ..., = sv,+ ..., 

with 6, = parameter to be determined (in 9 7 )  < 1, and f, = f,(xk, rk)  = O(1). 
With these representations, for 

r = (M26k)1+o/RLS2 = O(l ) ,  1/M2 < 6, < 1, (6.3) 
the leading terms in the equations of motion are: 

(6.4) 

Consider the case where the outer edge of the principal viscous layer is taken 
to be a paraboloidal surface of the form rk = Rk(xk) = A,xt. Then, subject to 
the outer edge boundary conditions, 

as rk + A,x~,  (6.4) may be reduced to a system of ordinary differential equations. 
uk -+ 0, Tk --f O ,  vk + x;’, p k  + (3yAi/8)  xkl, (6.5) 
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For a paraboloidal PVL outer edge, and for a formulation parallel to that 
presented by Bush (1968) for the corresponding layer in the HSIT, the appro- 
priate independent and dependent variables are 

sk = xk, tk  = log{Akzg/rk} (6 .6a )  

(such that tk + 0 as r,-+Rk = Akxk, tk + log ( l / D b )  +log (Rk/Rb) + as 
rk --f Db Rb) ; 

uk = Uk(tk), f l k  = (A, /2)~;)e-~k&(t , ) ,  
q c  = p k  = pk(sk) = ( 3 y A i / 8 )  skl* (6 .6b)  

In terms of the variables of (6 .6) ,  (6 .4 )  and (6 .5)  become 

( 6 . 7 a )  

(6 .7b )  

( 6 . 7 ~ )  

U k ,  @ k  + 0, &+ 1, 88 tl,+ 0. (6 .8 )  

Further, it is found that, in conjunction with (6 .7a )  and (6.8), (6 .7b)  and ( 6 . 7 ~ )  
yield, upon integration, 

0;- ‘k = (&/2r) [ 2 ~ ~ ( U k / O k ) e - 2 ~ d ~ + ( U k / @ k )  ( l - & ) e - 2 t k ] ,  ( 6 . 9 a )  
dt k 

(6 .9b )  
dO 
dt , = (d92r )  [I - % e - z t k ] .  

Near the outer edge of the PVL, where t, -+ 0, it is found that, for 

( 1 - W )  = O(1) > 0, 

the asymptotic solutions for the flow quantities in (6 .7 )  are 

0 lc - - 0 k , 0 t 2 / ( l + w ) +  lc ...* T = M2/3k[Ok,0ti/(l+w)+ . . . I +  ..., 
u, = U,,Ot&+ ... J U  = l + e k [ u , , , t ~ +  . . . I + . . . ,  
yc= l - & o t k + . . .  $21 = S ( A k / 2 ) s k g [ l - ( ~ , 0 + 1 ) t , +  . . . I +  ..., ( 6 . 1 0 ~ ~ )  

where 

1 1 - w  
q = -+- cr l + W ’  

Uk,o = undetermined const., 

(6 . lOb)  

A comparison of ( 5 . 1 2 )  and (6.10) shows clearly that the functional behaviours 
of the temperature solutions for the IIL and the PVL, as vi + A ,  and t ,  + 0, 
respectively, do not permit direct matching between these two layers, and the 
introduction of an intermediate transition layer (see appendix) is necessary to 
complete the matching. 
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Near the inner edge of the PVL, where t, +- 00, it is seen, from (6.9), that 

Hence, the shear and heat-conduction terms are found to dominate the momen- 
tum and energy equations, respectively, yielding, in this limit, the following 
asymptotic solutions of the similarity equations : 

where 

qc,m = [2(1 +w)]-l. (6.1 1 b)  

Consider the introduction of new independent variables, sz  and t f ,  defined by 

sz = s,, tf = t,-G,(s,), with G,(s,) = log{R,(s,)/R,(s,)}. (6.12) 

Then, in terms of these new variables, for sz fixed, tz  + 00, (6.1 1) may be expressed 
as 

T = M28, [o,, [ tf1/(l+w) + -% t*-wl(l+w) + . . .) + . . .] + . . . , 
l + W  

w = ~[a~ ' , , , t * , - l e - t i .+  ...I +... . (6.13) 

The PVL solutions of (6.11) and/or (6.13) do not satisfy the usual non-slip, 
temperature-specified boundary conditions at  the body surface, namely, 

u, v --f 0 T/qtag -+ pw = specified fnc(s,), as t, -+ log (l/D,) + Gk(s,) -+ 03. 

(6.14) 

Consequently, in accordance with the approach of Bush (1968), the analysis of 
an additional layer, interior to the PVL, in which t ,  = O{log (l/Db)) + 00, is 
introduced in the next section, in order to describe the adjustment of the flow in 
the vicinity of the body surface. 

7. The body viscous layer 
The body viscous layer (BVL) is introduced to investigate the flow in the region 

near the body. The analysis of this HWITregion follows the approach employed by 
Bush (1968) for the corresponding HSIT region. It is anticipatedfrom the previous 
section that this region should be dominated by viscous and heat-conduction 
effects. From the solutions of the PVL flow quantities for t, -+ co, it is expected 
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that, near the outer edge of the BVL, the flow variables should have the following 
behaviours: u -+ 1, TIM2 + 0, v/Sb +- 00, p + 1. The analysis of the BVL is 
carried out in the dist'orted co-ordinate system adopted by Bush (1968), namely: 

Sb = X ,  tb  = 7blOg{8Rb(x)/?"} = Tbt;, (7.1) 

where 7 b  = [log (l/Db)]-' = [lOg(8/8b)]-' --f 0. (7.2) 
Hence, 

t, -f 1 as r -f SbRb; t, + rblog (Rb/Rk) = -rbG, -+ 0 as r -+ SR,. 

The expansions for the flow quantities in this layer are 

U = Ub + Tb ?.hi'' + . . . , V = ST e+lTb vb + . . . , b 

T = 3f2(Tb + TbTi" + . . .), p = 1 + (M6)'$+, + . . . , (7.3) 

with f b  = fb(sb, t b )  = o( 1 ) .  
For I? = 0(1) and (7b/M20i+") < 1, the leading terms in the equations of 

motion for the BVL are: 

(7.4a) 

(7.5a) 

(7.5b) 

(7.7a) 

(7.7b) 

Consider first (7.4a), (7.5a), and ( 7 . 7 ~ ~ ) .  The first integral of (7.5a) is taken to 

T$- = -& b ,  (7.8a) 

be 

where Sb = 8 b ( S b )  > 0. The first integral of (7.7a) is taken to be 

(7.8b) 

where Tb < Tb,m = Tb,m(Sb)  > 0. The positive branch of (7.8b) represents the 
temperature field between the point of maximum temperature (Tb -+ Tb,m, 
t b  + tb,m) and the outer edge of the BVL (Tb -+ 0, t b  + 0); the negative branch of 

Tr- aTb = [2U(y- 1)]4&b(Tb,m-Tb)4, 



Flow past a slender axisymmetric body 559 

(7.8b) represents the temperature field between the point of maximum tempera- 
ture (Tb-+Tb,,, tb-ttb,,) and the body SWfaCe (Tb+Tb,,, tb-+l).  

For ub + 1, Tb -f 0 aS t b  -+ 0, and Ub -+ 0, T b  -+ G,, as t b  -3 1,  ( 7 . 8 ~ )  and (7.8b) 
combine to yield the following ‘ Crocco-like ’ relation between T, and ub : 

T b =  Tb,,(1-u,)(1+Q?hb); Q =  a(r-1)/2Tb,w. ( 7 . 9 ~ )  

In  determining (7.9a), it is found that 

T,,m/Tb,w = (Q + 1W4Q. (7.9b) 

However, in order to satisfy ( 7 . 4 ~ ) ,  it follows, from (7.8) and (7.9), that it is 
necessary to require that 

Ub = u b ( t b ) ,  y b  = T b ( t b ) ;  G,, (and Tb,m),  8, = consts. (7.10) 

Note that when (7.8b) is integrated to determine T b ( t b ) ,  the solution for u b ( t b )  

follows directly from the integration of ( 7 . 8 ~ ) .  
The shear function 8, for u b  + 1 as tb +- 0, u b  +- 0 as t, -+ 1,  by direct integration 

of ( 7 . 8 ~ ) ,  with Tb(Ub; Tb,,) given by ( 7 . 9 ~ ) ,  may be expressed as a quadrature: 

8b/Tr,w = sz = so [ ( 1  - Y) ( 1  + ! h ) ] “ d V .  (7.11) 

Consider, now, (7.4b), (7.5b), and (7.7b). From (7.56) and (7.7b), taking into 
account the solutions for ub and T,, it is found that the solutions for ui’) and Ti1) 
may be expressed as 

( 7 . 1 2 ~ )  

Th’’ = Gb 2 + 2Hb Tb, (7.12 b)  

with Gb, Hb, Jb = fncs(sb) to be determined. Indeed, for ui”, Ti” -+ 0 as t b  + 1, 
it is  required that 

1 

d u  
u(’) b = G b 2 - H  atb b( 1 - u b ) f J b 7  

Jb = - [ (2) , Gb + Hb = [+( Q + 1 ) s$] Gb = Jb, Gb. (7.13b) 

In  turn, it follows that, from (7.12) and (7.13), (7.4b) becomes 

(7.14) 

Near the outer edge of the BVL, where t b  -+ 0, it is found that the asymptotic 
solutions for the flow quantities in (7.4)-(7.7) are 
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q, 0 t p ( l + w )  + . . . 3 
' b  Ub = 1 + u tl/(l+o) + . . . ) = ___ 

l + W  
b,O b 

where 

A comparison of the asymptotic solutions of (6.13) and (7.15) indicates that the 
PVL and BVL solutions match if 

(7.16a) 

(7.16 b) 

(7.16 c) 

It is seen that the above conditions for matching do not require the specification 
of the (actual) body shape. Prom ( 7 . 1 6 ~ ) )  if I? is taken to be identically equal to 
one, then it follows that the PVL thickness parameter S is defined by 

6 = &fl+wTj/Ri < 1/&f < 78(1+w) < 1, (7.17 a)? 

where 7b(M,  RL, 6,) is given (approximately) by 

Moreover, from the above, the body thickness parameter S, must satisfy 

8, < ( M I + ~ / R ~ )  exp ( - M Z ( Z + ~ ) / R ~ ) .  (7.18) 

From (6.11b), (7.15b) and (7.16b), with I? = 1, the PVL shape constant A, is 
determined to be 

A ,  = [ ( 2 / a ) ( ~ + 1 ) T ~ ~ ~ f i ~ ] 9  = fnC(Tb,,;O,y,W). (7.19) 

Now consider the asymptotic solutions for the flow quantities in the BVL 
as t b  + 1. In terms of the original variables, these solutions are: 

T = 1 C ~ 2 { [ T b , , + 0 b , l ( 1 - t b ) f O ~ l ( l - t b ) 2 / 2 +  * . . ] + 7 b [ @ b : \ ( 1 - t b ) +  . . . I +  ...}, 

'u = [ u b , 1 (  - t b )  + U,*,l( 1 -tb)'/2 + . . .] + 7b[Ui:!J( 1 - t b )  + . . . ]  + . . ., 
v = S b 7 b e x p ( ( 1 - t b ) / T , } ( [ V , , l +  v f , l ( l - t b ) +  * . . I +  *. .} t  (7.20 a )  

t The requirements of the PIL and IIL that (M2/RL) ,  (l/.RL 82) + 0 are satisfied, 
since M2/RA < 1/RLS2 = l/M2'1+w'T, < 1. 
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where 

%, 1 = ( ub, 11') RA 3 v:, 1 = - [(4Tb, w ub, 1 @b, 11 { 2( ' + w ,  R; + ( ' + 2w) Rb GA}. 
(7.20b)f  

Rewriting (7.20) in terms of the independent variables 

c b  = sb, r b  = exp ((' - tb)/7b) = Rb 

yields 

= M2([Tb,,+ @b,1(7b10grb)+ @$1(7b10g%)2/2+.*.1 +7b[obt\(7b10grb) +..*I +*..I, 
u = [ ub, 1(7b log r b )  f u$1(7b log q b ) 2 / 2  + . * * ]  + 7b[ uf\ ( 7 b  log 70) + *. a ]  + * .  * , 

= sb7brb{"vb, 1 + v&(7b log r b )  + .. .I + **.I. (7.21) 

From either (7.20) or (7.21), it is seen that, although u and {(T/M2) - q,zu} -f 0 
as tb -+ 1 (i.e. r -+ C$Rb), v -+ a small finite value as t b  -+ 1. Consequently, the 
BVL solutions do not satisfy all the non-slip, temperature-specified boundary 
conditions at the body surface (cf. (6.14)). Therefore, in 3 8, a thin layer, interior 
to the BVL and adjacent to the body surface, is introduced, a layer in which the 
flow adjusts itself, so that all the surface boundary conditions are satisfied. 

8. The wall viscous layer 
The wall viscous layer (WVL) is introduced to study the flow in a region next 

to the body. For this layer, the proper representations for the co-ordinates and 
the flow quantities are 

6p = x ,  T B  = Rb; (8.1) 

T =1M2[Tb,w+7b(Tpf7bT$)+ ...)I, = 1+(L%!8)2pp+.... WY 
u = 7b(?hpfTbu$)+ ...), 2, = 6b7b(vp+7bv$)+...), 

With these representations, the leading terms in the equations of motion are 

(8 .3b )  

f In (7 .20b) ,  
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(8.4~) 

(8 .4b)  

(8.6~) 

To satisfy the non-slip, temperature-specified surface boundary conditions, it is 
necessary that 

up, u?', up, vjql), Tp, Tjql' -+ 0 as -+ 1. (8.7) 

The solutions of (8.3)-(8.6), in terms of the original flow variables, satisfying 
the boundary conditions of (8.7) and, in addition, matching to the BVL solutions 
(cf. (7.21)), are determined to be 

= Tb[&,l ( 1 0 g ~ ~ ) l + T ~ [ u ~ l ( 1 0 g ~ ~ ) 2 / 2 +  Uk~:(logT~)]+ 

(8.9b) 

The work reported in this paper was supported, in part, by NASA, Grant 
NGR-05-018-044. 
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Appendix. The viscous transition layer 
A viscous transition layer (VTL), intermediate to the IIL and PVL, is intro- 

duced t o  permit uniformly valid solutions for the flow variables. For this VTL, 
the distorted co-ordinates and flow variables are taken to have the following 
representations : 

5t = x, rt = [(+mJ - 1]/6, = [(r/SA,x+) - l]/S,, 6, < 1; 

u = l+(B,S,nU,+ ...)+ 62,Lu,+ ...) 62< 8,@< dt< 1, 

2, = 6RL( 1 + 6,w,+ . . .) = 6(A,J2) &*( 1 + &,?I,+ . . .), 

p = 1+(M6)2pt+ ..., 

(A 1 )  

T = (T,+ ...) + ( M S ) 2  &+ ..., < 1 ,  

(A 2) 

(A 3) where 6, is given by St = 1/Ri6 = 1/M1fw79 4 1. 

The leading terms in the equations of motion for the VTL, based upon the 
above representations, are 

If ut, vt, and %have the forms 

U t  = U,(rt), flt = &(at)? Tt = @t(rt), (A 5 )  

then the continuity, longitudinal momentum, and energy equations of (A 4) may 
be reduced to the following system of ordinary differential equations: 

The asymptotic solutions of (A 6 )  a t  the inner edge of the VTL, where Tt -+ - 03, 
for (1 - W )  > 0, are 

@ - @ , ( - q t ) 2 1 ( l + w )  + . . . => T = - qt)2/(l+w) + . . . , t -  t - =  

v,= Ut,-&qt)g+... J U  = l+e,sav,,-,(-r,)q+..., 
yt = l$,-m( - qt) + . . . => TJ = a(AJ2) &J) [ I  - atQ, -m(  - qt) + . . -1, (A 7 a )  

where 

q,-a = undetermined const., 

l + W  
Q,-m = [2 (G) + 11. (A 7 b )  

36-2 
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From a comparison of ( A  7)  and (6. lo), it is evident that the VTL solutions match 
to the PVL solutions (with I7 = 1). 

The asymptotic solutions of (A 6) a t  the outer edge of the VTL, where yt+ 00, 

are 
0, = 1 + 0 ,  erfc ((cr/Z)tA,r,} + . . .* T = 1 + Ot,coerfc ((a/2)* Alert} + . . . , 
U, = ?&,erfc((&)frA,~J+ ... a u  = l+e,S,.erfc{(S)aAkyt}+ ..., 
q =  -7 ,+ . . .  * ti = d'(AJ2) &&[l- Sty,+. . .I, (A 8)  

where 
confirms that the VTL solutions match to the IIL solutions. 

is that 8' < S,Sf. This inequality may be restated as 

q,, = undetermined consts. A comparison of ( A S )  and (5.12) 

It should be noted that, in the preceding formulation of the VTL, a requirement 

K ,  = ( M S ) ~  < we,sf = (i/w++)(1-g)/c, (A 9) 

with (l/M1+"& < 1 (cf. ( 7 . 1 7 ~ ) ) .  For cr = 1, (A9) reducestOK, < 1; however, 
for c < 1, ( A  9) reduces to K ,  < (l/M1+u&(l-u)/u < 1, a more severe restriction 
on the theory. In  turn, the restriction of (A 9) requires that 8, must now satisfy 

S, < (M~+"/I&) exp { - (JP(~+*')/R~) ( ~ ~ / ~ ~ ) - ( 1 - ~ ) ~ ( 1 + ~ )  1. (A 10) 

For cr = 1, (A 10) reduces to (7.18); for a < 1, (A 10) puts a more severerestriction 
on 8, than does (7 .18) .  
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